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Lamellae stability in confined systems with gravity
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Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil

~Received 2 April 1998!

The microphase separation of a diblock copolymer melt confined by hard walls and in the presence of a
gravitational field is simulated by means of a cell dynamical system model. It is found that the presence of hard
walls normal to the gravitational field are key ingredients to the formation of well ordered lamellae in block
copolymer melts. To this effect the currents in the directions normal and parallel to the field are calculated
along the interface of a lamellar domain, showing that the formation of lamellae parallel to the hard boundaries
and normal to the field correspond to the stable configuration. Also, it is found that the field increases the
interface width.@S1063-651X~98!07409-1#

PACS number~s!: 64.60.Cn, 61.41.1e, 64.75.1g
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Our main motivation for the present work has been to
insight about the mechanism responsible for the formation
well ordered layered samples of diblock copolymers, b
since the same striped pattern is observed in a variety
systems~zebra skin, fingerprints, and the visual cortex,
mention some!, we expect our results to be useful for th
general problem of pattern formation in finite systems. T
formation of the striped pattern has been studied by sev
authors and some factors important to the phenomenon
already been identified:~i! hydrodynamic interactions com
bined with the preferential wetting of a surface@1#; ~ii ! an-
nealing and quenching of the structure, which are capabl
relaxing the frustrated structure locally@2#; ~iii ! long range
interactions with an external surface@3#.

We intend to study the influence of two different effec
that have not been included in the references quoted ab
~and still need to be better understood in the general con
of block copolymers!: the simultaneous presence of th
gravitational field and of a rigid wall limiting the actual siz
of the sample, as in realistic systems. For that matter
consider simulations of a block copolymer~BCP! melt based
on a cell dynamical system~CDS! model @4# and the modi-
fied Cahn-Hilliard~CH! equation for driven spinodal decom
position @5#. In both cases we analyze systems with a gra
tational field normal to the hard boundary with the intenti
of reproducing the presence of a substrate. As observe
real systems, the layers are formed parallel to the subst
even in the absence of interaction with the wall.

Block copolymers are linear-chain molecules consist
of two equal length subchainsa andb grafted covalently to
each other. The subchainsa and b are made of different
monomer units,A andB, respectively. Below some critica
temperatureTc these two blocks tend to separate, but due
the covalent bond, they can segregate at best locally to f
a lamellar structure. The description of the microphase se
ration is similar to the spinodal decomposition of binary m
tures @1,6#, so we borrow the CDS model proposed by K
taharaet al. for the spinodal decomposition with an extern
force field with the appropriate addition of a term that mak
the large uniform domains unstable. As usual, we assig
scalar variablec(n,t) to each lattice site corresponding
the coarse-grained order parameter in thenth cell at timet
~time here is defined as the number of iterations!. This order
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parameter represents the differencecA2cB , wherecA(cB)
is the local number density ofA(B). The ingredients for the
time evolution ofc are as follows: local dynamics dictate
by a function with two symmetric hyperbolic attractive fixe
points, diffusive coupling with neighbors, stabilization of th
homogeneous solution, and conservation ofc. The conser-
vation, when an external field is present, must be imposed
considering the Kawasaki exchange dynamics explicitly. T
detailed explanation of this model is found in@4# for spin-
odal decomposition. With this, we come to a final equat
for a melt of even BCP molecules :

c~n,t11!5~12B!c~n,t !1^^C$ i , j ;sgn@ I ~n,t !2I ~ j ,t !#%

3@ I ~n,t !2I ~ j ,t !#&&, ~1!

where

I ~n,t ![A tanh@c~n,t !#2c~n,t !1D@^^c~n,t !&&2c~n,t !#

2hnz ~2!

is essentially the chemical potential.^^•••&& is the isotropic
space average of•••, B, A, and D are positive phenom-
enological constants. The parameterB appears in this mode
to stabilize the solutionc50 in the bulk; forB50 we have
a model for spinodal decomposition, in which the doma
can grow without bound. Scaling arguments have proved
B;N22, whereN is the polymerization index@7#. h is the
external field, which we assume is in thez direction, andnz
is thez component ofn. The collision coefficient is given by
C( i , j ;a)5@cc1ac( j )#@cc2ac( i )#/cc

2 , where 6cc are
the fixed points ofA tanhc2c.

For all the simulations we used a 1283256 lattice,A
51.2, D50.5, and uniformly distributed random initial con
ditions. The external field, when present, is parallel to
smaller dimension, which we callz. The direction normal to
the field will be called thex direction. We impose no flux
boundary conditions:I (z11)2I (z)uboundaries50. Figure 1
shows the pattern obtained after 20 000, 40 000, and 60
iterations, forB50.018 andh50.001.

Domains initially aligned with the field present a varico
instability @8# triggered by a density increase near the ha
boundaries. In this varicose mode the bulges tend to gr
4027 © 1998 The American Physical Society
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making the coalescence of the domains possible and we
serve the formation of lamellae on the ‘‘substrate.’’ The ce
tral region, oriented along the field, shrinks with time. It
interesting to compare these patterns to the ones obtaine
Brown and Chakrabarti in@3#. These authors numericall
integrate the Cahn-Hilliard–like equation of motion for th
microphase separation dynamics with an extra term in
free energy functional that takes into account a long-ra
interaction with a substrate. What they see is truly a surf
effect; their patterns present two regions: one with orde
lamellae, and another one with randomly oriented lamel
That same pattern had already been reported in@1# with a
much simpler boundary condition: just keeping one line w
a fixed value ofc. Here we observe patterns with regio
where the lamellae are oriented normally to the field on
and bottom, ordered such that the denser part is in con
with the substrate, and another one in which the lame
prefer to be parallel to the field, as found in systems with f
periodic boundary conditions@9#. For the same boundar
condition andh50, no layers are formed. To conclude th
comparison, we have performed simulations using a C
model with the same form of surface field as in@3# and no
bulk field to be compared to simulations with the bulk fie
only. Adjusting the value ofh such that the boundaries i
both cases have the same values of the field, we nee
surface field one order of magnitude larger to obtain
same number of lamellae. The patterns with the surface
bulk field are shown in Fig. 2.

The presence of the field does not affect the linear sta
ity about the homogeneous statec50. We find that the so-
lution c50 is unstable whenB<(A21)2/4D, indepen-

FIG. 1. Simulation of a driven system with no flux bounda
conditions. Here,A51.2, B50.018, andh50.001 after~a! 5000,
~b! 20 000, and~c! 60 000 iterations. Lamellae oriented normal
the external field accumulate at the hard boundaries, as observ
real systems.
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dently of the field. For the valuesA51.2 andD50.5 used in
the simulations here, we should expect to observe pat
formation forB<0.1. What we actually see from the simu
lations is quite different though. For example, forB
50.018,c50 is stable forh.0.02. For smaller fields, there
is pattern formation, but the amplitude ofc is smaller than
that measured in theh50 simulations. The decrease in am
plitude is accompanied by an increase in the interface wid
so the resulting pattern is less segregated than that wit
the field. As for the domain morphology the early stages
microphase separation are similar in driven and nondri
systems@9#, in agreement with the linear stability analysis

To understand the formation of lamellae on the ha
boundaries we analyze the stability of one vertical lamella
the presence of a gravitational field. It is well known tha
gravitational field enhances the stability of interfaces para
to itself @5#, which is not observed near the hard bounda
To understand this we assume that close to the interface
nonlocal term of the CH free energy for block copolymers
an irrelevant constant. In this spirit, we use the modified C
equation proposed in@5# for the spinodal decomposition in
the presence of a gravitational field in thez direction:

]c

]t
5¹•F S 12

c2

cc
D S ¹

dF

dc
2hẑD G , ~3!

in

FIG. 2. Here we compare the long-range surface interaction
the formhs /z3 as proposed by Brown and Chakrabarti. For all thr
patternsB50.018. In~a! the pattern is obtained with surface inte
action only andhs50.001. ~b! corresponds to the pattern wit
gravitational fieldh50.001, and~c! surface fieldhs50.01. For the
values chosen,~a! and ~b! have the same field atz51, but the
pattern with gravity is more ordered. Close to the substrate patt
~b! and~c! present the same number of lamellae but the field in~c!
is ten times larger, showing that the bulk field is more effective
producing well ordered lamellae.
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where F@c# is the usual CH free energy,F

5*dr @ 1
2 k(¹c)22 1

2 r 0c21 1
4 gc4#, for binary systems. The

steady state solutions of Eq.~3! for a system with hard walls
normal to the field satisfy

j x52]x~k]x
2c1r 0c2gc3!2k]z

2]xc50, ~4a!

j z52]z~k]z
2c1r 0c2gc3!2k]x

2]zc5h. ~4b!

With this, we see that the presence of the bottom w
forbids the stable flux in the vertical direction so the syst
seeks the naturally stable pattern, the one parallel to the w
From Eq. ~4b! it can be shown, for the case of horizont
lamellae, that the interface becomes less sharp with incr
ing h. This effect is noticeable in Fig. 2: all the patterns we
plotted with the same gray scale so it is clear that pattern~b!,
with gravitational field, is more diffuse. This result can
understood if we assume thatc(z)5ce tanh(z/j)1ec1
1O(h2) for a particular interface located atz50, wherece

5Ar 0 /g, j5A2k/r 0, and e5h/k. We obtain c15
2(z/4j)ce , hence

c~z!5ceS tanh
z

j
2e

z

4j D , ~5!
ll

ll.

s-

and

ch508 ~0!5
ce

j
,

chÞ08 ~0!5
ce

j S 12
e

4D,
ce

j
, ~6!

which shows that the interface has an elongated profile in
presence of the field. In summary, we conclude that the p
ence of hard walls normal to the gravitational field are k
ingredients to the formation of well ordered lamellae in BC
melts. Other interactions like hydrodynamics and preferen
wetting of the substrate may enhance this effect, but we
that the bulk field considered here is more efficient than
surface field for ordering the lamellae, and involves a diff
ent mechanism of lamellae formation. We also find that
gravitational field increases the interface width, produc
less segregated patterns.
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